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l, INTRODUCTION 

In a broad sense, all scientific analysis is model building. The scientist, 
whether in the physical or the social sciences, attempts to summarize the 
complexity of the phenomenal world in the form of simplified statements, 
laws, hypotheses or models; and for two main reasons, to understand and 
to control. 

A model in this sense is not usually a physical replica of the system under 
study, though even this is possible, as when a newly designed aircraft is 
partially tested by observing the behaviour of a model in a wind-tunnel. 
More generally, by a model is meant a description of the relationships 
connecting the variables of interest: the rules of the game. The process of 
model-building consists of putting together a set of formal expressions of 
these relationships to the point when the behaviour of the model adequately 

mimics the behaviour of the system. 

Models are built for specific purposes and do not necessarily attempt to 
prescribe in detail every facet of the system. In fact, the utility of some 
models resides as much in what they omit on grounds of irrelevance as in 
what is retained: an arterial road map serves its purpose by ignoring minor 
streets and unimportant topographical detail; and a model income-distribution 
may, for some purposes, merely present the actual distribution without con­
cerning itself wfth the countless circumstances which determine the income 
of a particular individual person. 

One of the basic problems in statistical analysis is the specification of 
the model to be used, i.e., the mathematical form of the population from which 
the data are regarded as a sample. The problem is that of drawing inferences 
from the probability distribution of the observed variables to the underlying 
structure which generated this observed distribution. In the social sciences, 
the observed data typically come from non-experimental situations; in the 
absence of experimental controls, statistical procedures must provide a 
substitute. 

The models proposed frequently contain latent variables which, while not 
directly observed, have implications for relationships between observable 
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variables. In the document Strategies for the Analysis of f-IFS Data* a 
distinction is drawn bet1•1een explanatory and intermediate variables. The 
basic idea is that the explanatory variables, though more easily observable 
in general, are causally more remote from fertility than the intermediate 
variables and operate through them. Intermediate variables such as 
frequency of intercourse, contraceptive practice, and periods of lactation 
may be regarded as having a direct causal effect on conception. They are, 
in one sense, more explanatory than the explanatory variables. The latter, 
for example educational status and income, are considered as having an 
influence on fertility and may be described as causal; but their influence 
is brought to bear, in the main, through the effect which they themselves 
have on the intermediate variables. Some of the intermediate variables, such 
as age at marriage, may also be observed directly and may be included as 
predictor or explanatory variables in some of the equations. 

The models are also generally built up of several equations or submodels 
which interact together and must be considered simultaneously. This inter­
depence of the relationships between the variables is the source of many of 
the difficulties which arise in attempting to describe a data set adequately 
using conventional statistical methods. 

For the most part {though this is not laid down as an inviolable rule) 
fertility models seem to be most useful if they relate fertility itself, 
however measured, to 'explanatory' variables, verify or disprove hypotheses 
concerning that relationship and, if possible, quantify the contribution of 
particular variables to fertility behaviour. A simple example may illustrate 
some of the difficulties. Suppose we are interested in the relationship 
between fertility (y) (measured by number of children born) and the two 
variables age (x1) and number of years of education (x2). To simplify the 
exposition, we suppose that for each member of the sample satisfactory 

values of the x's and y are determined. 

Once a dependent variable has been selected, the researcher identifies a 
set of variables which are related to it, in the sense that a change in the 

*WFS Basic Documentation Series, No.9 (The Hague: International Statistical 
Institute, 1977) 
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value of one of these variables is believed to result in a change in the 
value of the dependent variable. 

These other variables may be classified as predictors or controls. Some 
variables, such as level of education may be considered in either role. 
Certain other variables are consistently treated by demographers as con­
trols. When the dependent variable is a measure of fertility, age is the 
best example of a control variable. The manner in which fertility varies 
with the age of a woman is well known, and thus we would not regard age 
as a variable which in itself advanced our understanding of fertility. 
Cumulative fertility, for example, increases monotonically with age by 
virtue of its definition. 

Nevertheless, it is not sensible to exclude age from an analysis of fer­
tility. One of the following strategies should be adopted (a) the popul­
ation should be subdivided into cohorts, or age groups, and each one 
analyzed separately; (b) the dependent variable should be defined in such 
a way that the impact of age is removed; or (c) age should be included 
explicitly as a control variable. 

In the context of the path models described below, the third course is 
followed by including age as a variable in the equations in the model and 
thus by removing the effect of age from the other relationships estimated 
in the model. In the estimation, therefore, age is treated as an explan­
atory variable, though the purpose of its inclusion is largely that of 
control. In Section 6, some indication is given of the usefulness of co­
hort analysis. 

The next question is whether we need to write into the model the inter­
mediate variables. A decision depends on what we are trying to do with 
the model. From one point of view the explanatory variables can be re­
garded as stimuli evoking a response y through some mechanism which is 
not of immediate interest. The situation is then one of a blaak box 

linking stimulus and response and we are not concerned with how the 
relationships inside the black box operate. (Sooner or later we may want 
to examine them and take the lid off the box, but not for the present). 
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In such a case the causal links between x's and y are set up as direct, 
although it is recognized that the causality is more circuitous. There 
are a number of relationships which we may wish the model to contain. 
First, we expect that age will influence fertility directly (perhaps 
through some intermediate variables not included in the model). We would 
also expect that years of education will affect fertility directly. We 
can rule out the possibility that years of education will affect age, but 
we may postulate that age will be related to length of formal education 
and through this will affect fertility indirectly. 

We represent this model diagrammatically below, using one-way arrows 
leading from each explanatory variable to each variable which it influences 
directly 

Years of education 

EXAMPLE 1 

of children 
(y) 

We assume that the relationships are linear (or that the variables have 
been converted into a suitable form to justify linearity, as to which see 
Technical Bulletin No.1*). The relationships may be written as 

x2 f321 xl 
( 1.1) 

Y Sol xl + f302 x2 

These equations are not, however, exact in practice and it is necessary to 
make some allowance for departure from exactitude. This is usually done, as 
in the regression case, by adding a term on the right. But this is not 
necessarily a random variable. It stands for something we have purposely, 
or accidentally, omitted from the model but which we hope is not serious 
enough to impair the approximate representation provided by it. It is 

*Sir Maurice Kendall Some Notes on Statistical Problems Likely to Arise 
in the Analysis of ~FS Surveys (The Hague: International Statistical 
Institute, 1976) 
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not a standard disturbance term but represents a variety of unmeasured 
sources of variation. But to make any progress with the estimation we 
still need to assume something about this term. What we shall assume is 
that it has a mean value of zero and is uncorrelated with any of the 
immediate determinants of the dependent variable to which it pertains. 
The equations may now be written as 

Xz S21 xl + Szu Xu 
( 1. 2) 

y Sol xl + Soz Xz + Sov xv 

The diagram may be modified to include the residual terms 

Without loss of generality, we assume that all the variables are standard­
ized to zero mean and unit variance. Conventionally, the coefficients in 
the equations with standardized variables are called path coefficients and 
are written as pij where the first subscript identifies the dependent 
variable, the second the variable whose direct effect on the variable is 
measured by the path coefficient. The system can therefore be written as 

Xz = P21 xl + Pzu Xu 
(1.3) 

y = Po1 xl + Poz Xz + Pov xv 

This system is a recursive system - in other words, there are no feedback 
loops in the system whereby xi can influence itself. In this Technical 
Bulletin we shall not consider models which include a direct or indirect 
feedback loop. 
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The estimation and interpretation of models such as (1.2) and (1.3) is 
called path analysis. The original formulation of the method by Wright 
(1921) was in terms of the decomposition of correlation coefficients. 
The alternative formulation in terms of regression analysis has however 
some advantages. The two methods are presented in the following sections. 

2, ESTIMATION AND INTERPRETATION OF PATH COEFFICIENTS 

The first method involves the use of the observed zero order correlations 
between the variables in the system together with the specified relation­
ships between the variables in order to estimate the path coefficients. 
This method is described more fully in Duncan (1966). When dealing with 
sample data, the assumed zero correlations in the population between the 
disturbance terms and causally prior variables will not hold exactly. 
However, as part of the estimation procedure, the fact that the expected 
value of these correlations is zero is used in order to derive unbiased 
estimators of the coefficients. 

The second method consists of applying ordinary least squares regression 
to the equations in the system one by one. If the variables are standard­
ized (transformed to zero mean and unit variance), the estimates obtained 
are identical to those obtained by the first method. 

The regression method of estimation is in general preferable on two counts. 
First, the fact that we are dealing with sample data is recognized more 
explicitly. Second, the regression estimation procedure provides automati­
cally estimates of the precision of the coefficients and a framework in 
which hypotheses concerning the coefficients may be tested. The path 
approach does, however, provide an intuitively more appealing orientation 
and the diagrammatic representation makes the substantive assumptions in 
the model more apparent. Furthermore, as we show later, overidentification 
of the model is easier to detect when the full set of simultaneous 
equations is written down explicitly. 
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2.1 DECOMPOSITION OF CORRELATION COEFFICIENTS 

Since the variables are standardized, the correlation coefficient rij can 
be written as 

Thus, from (1.3) 

(2 .1) 

and xu is uncorrelated with xi. 

Similarly 

(2 .2) 

and 

(2 .3) 

Equations (2.2) and (2.3) enable us to solve for p01 and p02 in terms of 
r 01 , r 02 and r 12 , giving 

rOl - r02 r12 

1 - rrz 
r02 - rOl rl2 

1 - rrz 
Thus, from (2.1), (2.2) and (2.3), the path coefficients p 01 , p 02 and p 21 
can be obtained directly from the correlation coefficients. 

*The subscript O is used to denote the variable y. 
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With this simple model, the data from the Fiji Fertility Survey, with 
4928 respondents, provide the following values for the correlation 

coefficients 

r 01 = 0.64 {correlation between age and number of children} 

r 02 =-0.34 years of education and number of 
children} 

r 12 =-0.32 { age and years of education} 

Substituting these values in (2.1), (2.2) and (2.3) gives 

-0.32 

0.59 

p02 = -0.15 

The residual paths can be obtained simply by using: 

1 2 1 
r22 = l = n E x2 = n E x2 (p21 xl + P2u xu) 

= Ph + P~u 

Hence 

i.e., 

and 

1 1 
rOO = l = n E Y2 = n E y (Pol xl + Po2 x2 + Pov xv) 

= P51 + P52 + 2Po1 Po2 P21 + P5v 

i.e., 

Pov = 

8 

(2.4} 

(2.5) 



In this case 

Pzu = 0.94 

Pov = o. 76 

Inserting the values on the diagram, we obtain 

XU 

0.94 
xv 

Xz 0. 76 

-0.32 ~15 

Age ~No. of children 
xl:---------------'> Y 

0.59 

2.2 REGRESSION EQUATIONS 

This path model amounts to a sequence of conventional regression analyses 
and the solutions of the simultaneous equations (1.3) are simply the 
standardized regression coefficients - the beta coefficients. Thus the 
path p21 may be obtained by regressing x 2 on x1, and the paths p01 and 
Paz may be obtained by regressing y on x1 and x2, using ordinary least 
squares. This is a useful result since it places the method of path 
analysis in the framework of standard statistical analysis and provides 
estimates for the standard errors of the coefficients obtained. 

As a statistical technique, therefore, path analysis adds nothing to 
conventional regression analysis when applied recursively to a system of 
equations. But it does make the rationale for the system of regression 
equations explicit. And it presents "a method of measuring the direct 
influence along each separate path in such a system and thus of finding the 
degree to which variation of a given effect is determined by each particular 
cause. The method depends on the combination of knowledge of the degrees 
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of correlation among the variables in a system with such knowledge as may 
be possessed of the causal relations" (Wright 1921). 

A conventional path coefficient gives the expected effect of a change of 
one standard deviation in the explanatory variable (holding other variables 
constant); this expected change is expressed in terms of the standard 
deviation of the predicted variable. In this example,we wish to apportion 
the explanation of the dependent variable between the two explanatory 
variables. 

The total effect of age may be expressed by the correlation between age 
and number of children i.e., r 01 = 0.64. From equation (2.2) we see that 
this can be expressed as the sum of two components~ p01 , the direct effect 
of age, and p02 r 12 (=p01 p21 ) the indirect effect of age acting through 

years of education. Numerically this is 

0.64 = 0.59 + (-0.32)(-0.15). 

Thus the direct effect is +0.59. 

The total effect of years of education is not however given by the 
correlation of years of education with number of children. A part of this 
correlation is due to the effect of the causally prior variable, age, on 
years of education. Thus,in terms of the model specified the total effect 
of years of education is the direct effect p02 = -0.15. We return to this 
problem in a more complex model later. 

2.3 GENERALIZATION OF THE MODEL 

There are five general characteristics of the simultaneous equation models 
we consider here. First, the models consist of a set of equations each of 
which possesses a disturbance term which summarizes the influence of un­
measured or unknown variables on the structure of interest. The models are 
thus not exact or deterministic but stochastic. Second, most applications 
are concerned with variables measured in cross-sectional surveys and are, 
therefore, static rather than dynamic models. Third, the models generally 
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rule out two-\'/ay causation and are thus recursive. Fourth, the models 
are assumed linear in the variables and the disturbances. And finally, 
the disturbances are assumed to be contemporaneously independent. 

We are concerned l'lith linear additive asymetric relationships among a set 
of variables which are measured on an interval scale. In the qualitative 
diagram every included variable is represented either as completely 
determined by certain others or as an ultimate (exogenous) factor. (In 
the example above, there is only one exogenous variable: age). In a 
structural equation model, each equation represents a causal link rather 
than a mere empirical association. This is in contrast to a regression 
model \'/here each equation represents the conditional mean of the dependent 
variable in that equation as a function of the explanatory variables. The 
most important special feature of the structural model is the simultaneity 
of the equations, i.e., the estimation of the parameters of a single 
equation is carried out in the context of the other equations in the system. 
The optimum properties of ordinary least squares (OLS) regress'ion apply 
only to a single equation at a time. We must also take into account the 
fact that each equation is embedded in a set of equations which constitutes 
our recursive model \'/ith independent disturbances. Thus we need an 
estimation method which is optimal with regard to the joint estimation of 
the parameters of the system which make up the model. The simple example 
above shows that solving the set of simultaneous equations (1.3) is 
equivalent to equation-by-equation least squares regression. This result 
holds for all linear recursive models with independent disturbances (for 
proof, see for example Land (1973)). 

The initial assumption for path analysis must be the specification of the 
causal (or temporal) ordering between the variables of the model. The data 
themselves cannot give us any assistance either for this or for the selection 
of the variables to be included in the model. The validity of these 
assumptions cannot be evaluated from the data; external criteria or 
substantive theory must provide the basis for this stage. Regardless of our 
ordering, the method of analysis will work and will provide results. No 
indication of error will emerge nor will the results be inconsistent. However, 
the diagrammatic representation of the model makes the assumptions explicit 
and provides a framework for the critical evaluation of the results. 
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The next important assumption involved is that the relationships are 
linear. Although this may not hold exactly in practice the linear 
regression of y on x may always be interpreted as the best linear 
approximation to the relationship when the latter is non-linear. 

We also assume that each equation is additive. In other words we assume 
that a unit change in x1, say, has the same effect on x2 whatever the 
value of x2. And we assume also that a unit change in x1 has the same 
effect on x2 whatever the values of the other variables. These assump­
tions may not be realistic, but fortunately, although non-linear and 
interaction effects are not included in the simple model, they can be 
included in it. An examination of the residuals in the equations can 
provide us with evidence as to whether such modifications of the model 
are necessary. 

The error terms are assumed uncorrelated with all prior variables and 
hence with each other. They need not, however, be regarded as representing 
real variables but simply as an expression of the lack of information in 
the model and hence can reasonably be defined as being independent of the 
explanatory variables in the same equation. 

The explanatory variables were described above as being measured on an 
interval scale. There is one important exception to this constraint. 
Binary variables (dichotomies) can be included and treated as interval level 
variables if the two categories are assigned numerical scores. We shall use 
0 and 1 but the scores assigned to the two categories will not affect the 
standardized coefficients. As predictors, binary variables can be invaluable. 
Through them we can also incorporate polytomies (nominal scale variables) 
although there may be some difficulties with interpretation. 

3, THE SATURATED ADDITIVE MODEL 

A recursive model in which each variable is assumed to be dependent on all 
causally prior variables may be described as saturated. An example used with 
the Fiji Fertility Survey data is given below 
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EXAMPLE 2 

where y : number of children 
x 1: age in years 
x 2: education in years 
x3: age at marriage 

Empirical evidence suggests that x1, x2 and x3 are all related to fertility. 
The link between x1 and x2 expresses the fact that the younger the age cohort 
the higher the proportion educated. The link from x1 to x

3 
will hold if age 

at marriage has changed over time. The link between x 2 and x3 is based on 
the (testable) assumption that education delays entry into marriage either 
directly or by changing the alternatives available to the woman. 

An additional factor in this example is that since the data come from a cross­
sectional survey of ever-married women, there is an inbuilt positive 
correlation between age and age at marriage. This could be removed by 
censoring the date and considering only those women of 25 and over, say, 
who were married before 25. However, such modifications are not considered 
here since the examples merely provide illustrations of many of the 
technical and interpretative problems which will also arise in any serious 
attempt at model-building. 
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The causal ordering implied in this case is that age is causally prior 
to education, which is causally prior to age at marriage, which in turn 
is causally prior to number of children. This model in fact simply 
includes the variable x

3 
(age at marriage) in the causal sequence 

between years of education and number of children in the simple model 
of the first example. The model can be written as the following set 
of equations: 

x2 = P2i xi + P2u xu 

X3 = P3i xi + P32 x2 + P3v xv 

y = Poi xi + Po2 x2 + Po3 X3 + Pow xW 

(3.i) 

(3.2) 

( 3. 3) 

Using the first method of Example i, we can obtain equations for each of 
the six correlation coefficients in terms of the paths in the model. The 
equations are: 

r2i = P2i 

r3i = P3i + P32 r2i 

r32 = P3i ri2 + P32 

roi = Poi + Po2 r2i + Po3 r3i 

r02 = Poi ri2 + Po2 + Po3 r32 

r03 = Poi ri3 + Po2 r23 + Po3 

These equations are all of the same general form given by 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3 .9) 

(3.iO) 

which is the basic theorem of path analysis, where q runs over all 
variables from which paths lead directly to xi. 

Equation (3.4) provides a solution for the value of p 2i. Equations (3.5) 
and (3.6) provide the solution for the two unknowns p3i and p32 . Equations 
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(3.7), (3.8) and (3.9) provide the solutions for Poi• r 02 and r 03 . The 
algebra becomes cumbersome, however, even for this model and it is easier 

to obtain a solution by running the three regressions indicated by equations 
(3.i), (3.2) and (3.3). The standardized regression coefficients are the 
values of the path coefficients. First, we run the regression of x 2 
(education) on x1 (age); this gives r 2i. Next, we run the regression of 

x3 on xi and x 2 , which gives the path coefficients r 3i and r 32 . Finally, 
we run the regression of yon xi, x2 and x3, which gives Poi• p02 and p03 . 

The residual path coefficients p2u' r 3v and Pow are the square roots of the 
residual variances in the three regressions. When these runs were carried 
out on the Fiji data, the numerical values indicated on the diagram below 
were obtained: 

x 

10~95 
~·, rw 3 -0.05 0. 71 

0.62 
xi y 

0.38 

o.i2 

f :.91 
x v 

The predictive model is represented by equation (3.3) and is 

y 0.62 xi - 0.05 x2 - 0.28 x3 

This simply represents the direct effects of the three explanatory 

variables and would be obtained by a normal regression analysis. The 
principal advantage of the structural model is that it enables us to 
proceed further in our analysis of the mechanism involved. 

i5 



The total effect of age can be represented by the correlation between age 
and number of children and is equal to 0.64. However, from (3.7) 

Expanding further by substituting for r 21 and r 31 from (3.4} and (3.5) gives 

This is the decomposition of the overall correlation of age and number of 
children and each of the terms above can be interpreted. 

p01 is the direct effect of age; = +0.62 

p02 p 21 is the indirect effect of age, working through its relationship 

with education; (-0.32)(-0.05) = + 0.02 

p03 p31 is the indirect effect of age, working through its relationship 
with age at marriage; (0.12}(-0.28) = -0.03 

p03 p32 p21 is the indirect effect of age, working through education, 
in turn working through age at marriage; (-0.32)(0.38}(-0.28) = +0.03 

The four effects add up to the total effect r 01 = 0.64. 

As indicated in Example 1, the total effect of x2 (years of education) is 
not equal to r 02 {which is -0.34) but is equal to the sum of the direct and 
indirect paths from x2 toy. 

p02 is the direct effect of education; = -0.05 

p03 p32 is the indirect effect of education, working through age at 
marriage; (0.38)(-0.28) = -0.10 ' 

The total effect of education is p02 + p03 p32 = -0.15 
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The total effect of x
3 

(age at marriage) is the direct effect v03 since 
there are no variables between x3 and y in the model; = -0.28. 

Contrasting these results with the results obtained in Example 1 shows 
the effect of introducing a new variable into the structural model. The 
variable x

3 
has been introduced explicitly into the system between x2 and y. 

The total effect for both x1 and x2 remain unchanged since the new variable 
is causally posterior to both. However, the allocation of this total effect 
between direct and indirect effects changes for both x1 and x2 . The table 
below gives the details: 

DECOMPOSITION OF TOTAL EFFECT FOR AGE (x1) AND EDUCATION (x2) 

Variable 

Education 
(x2) 

Type of effect 

Direct effect 

Indirect effects 

(i) through x 3 

(ii) through x 2 and 
x3 jointly 

(iii) through x 2 
directly 

Direct effect 

Indirect effect 

through x 3 

(x~) excluded 
fr m the model 

+0.59 

not applicable 

not applicable 

+0.05 

-0.15 

not applicable 

x~ included 
i the model 

+0.62 

-0.03 

+0.03 

+0.02 

-0.05 

-0.10 

Thus omitting a variable from the model does not invalidate the results; it 
simply reduces the amount of information we obtain from the data. Introducing 
the variable x

3 
into the model does not reduce the explanatory power of 

education; it does however provide an explanation of part of the mechanism 
through which education influences fertility. 

17 



4, UNSATURATED MODELS 

A model in which some of the variables are not dependent on all causally 
prior variables may be described as unsaturated. Example 3 below represents 

1 
such a system. The data again come from the Fiji study 

EXAMPLE 3 

where y : number of children 
x1: age in years 
x2: race 
x 3 : education in years 
x 4: desired family size. 

y 

Three points distinguish this example from the others. First, there are two 
exogenous variables (ultimate factors) x1 and x2 which while prior to all 
the other variables are not ordered with respect to each other. These are 
not connected in the diagram since they are uncorrelated. Second, the 
variable x2 is a binary variable (two categories Fijian and Indian). Third, 
two paths are omitted from the diagram - the paths p41 and p03 . 

The reason for trying an unsaturated model is that there may be some 
theoretical basis for suggesting that some of the paths take zero values. 
It is the omission of these paths from the model which leads to the 
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description of the model as unsaturated. The model can be written as: 

( 4 .1) 

(4.2) 

(4.3) 

The paths may be estimated directly by regression as before, which gives 
the numerical values inserted below: 

However, the alternative method of estimation indicates that there may be 
some problems here. There are nine simultaneous equations available to 
estimate the seven paths in the model. Thus without further constraints the 
model is overidentified. The regression approach enables us to test these 
constraints. In essence we proceed by estimating all the coefficients in the 
fully saturated model and testing for significance the coefficients which 
we wish to remove. The result for the saturated model is: 

y 
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Since the modifications to the model involve only one coefficient in each 
of two equations, each of these coefficients can be tested using a t-test 
with (n-p-1) degrees of freedom where p is the number of predictors in the 
equation. In fact both the coefficients are significant and should not be 
excluded from the model. If we wish to test more than one coefficient in 
any equation we must use an F test with appropriate degrees of freedom to 
test the full equation against the equation omitting the variables we wish 
to constrain. Since we are dealing with sample estimates of the population 
coefficients it is appropriate, even when we are dealing with a saturated 
model, to test whether the values obtained are simply due to sampling error. 

5. THE USE OF BINARY VARIABLES 

The introduction of a binary variable - race (x2) - into the structural 
model does not raise any special difficulties. Formally, a binary variable 

can be treated quite properly as an interval level variable. The assumption 
of additivity can be examined very easily in this case if we construct 
separate models for each of the two races and estimate the coefficients 
directly. Returning to the unsaturated model above, the results for the 
separate models are: 

FIJIAN (RACE = 0) 

0.98 x 

Xl~--~f---=-i~==;0~,;28~==~ 0.51 W 

-0.3~ ~,~' 0.64 y 

X3 
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INDIAN (RACE 1) 

The pattern of effects is the same for the two models although the numerical 
values of the coefficient are not equal. It is possible to test the null 
hypothesis of equality for the coefficients using a t-test of an F-test. 
In this case, by inspection, the implications of the two sets of coefficients 
seem to be the same. The test results confirm this. 

A further example illustrates the need for care in setting up the model. If 
race is included as an additional variable (x5) in the model of Example 2, 
we obtain the result below: 

age in years 
education in years 
age at marriage 
race 

XU 

l 0.85 

0. 71 

y 
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This model gives the additive effect of race as an exogenous variable in 
this structural model. However, in this case separate analyses for the two 
races give substantially different results. The subsample sizes are: 
Fijian, 2045; Indian, 2688. 

FIJIAN (RACE = 0) 

xlu 
0.93 

-~x\2~ 
x 1 _0.16 0.63 ) 

~\~ 
r0.97 

INDIAN (RACE 1) 
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There are two important differences betv1een the tv10 cases. First, the 
difference in the relationship between age and age at marriage in the t1~0 

races. For the Fijians, age and age at marriage are positively and 
strongly correlated; for the Indians, the correlation is negative. Also 
the direct effect of age at marriage on fertility is negative for each 
race and equal to within sampling error (-0.27 for Fijians; -0.26 for Indians). 
Thus the indirect effect of age on fertility through age at marriage is 
negative for the Fijians and positive, though small, for the Indians. 
Second, the effect of education is different in strength for the two cases. 
Both the direct and indirect effects of education are considerably larger 
for the Indians. 

For this model, there is interaction between race and the other explanatory 
variables. Thus the two separate models provide a much more valuable 
representation than the pooled model. This does not invalidate the model 

from which race is omitted. That model (Example 2) provides an average or 
summary description of the way in which the other explanatory variables 
operate. 

We can easily incorporate such interaction effects in the model by 
constructing new variables which represent the interaction. We must also 
include the binary variable itself in the equations. If we construct an 
interactive term for every predictor, the result will be equivalent to 
running two separate regressions. Thus, this technique is valuable only 
if we can assume that some of the predictors are stable for the whole 
population. 

6, DISCUSSION 

6.1 USE OF AGE AS AN EXPLANATORY VARIABLE 

The association between age and number of children is the strongest 
association in the data and age is exogenous with respect to all the 
explanatory variables in the model. Conventionally in the analysis of 
fertility, the data are divided into age cohorts and the analysis is 
carried out independently for each cohort. Inspection of the data for 
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the Fiji Fertility Survey shows that the effect of age is linear but 
does not easily provide evidence on interaction between age and the other 
explanatory variables. It seems likely, however, that education and age 
at marriage may have different effects for different age groups. This may 
be investigated by estimating the path coefficients for the structural 
model for each cohort separately and comparing the results. 

The two diagrams below present the results for the youngest and oldest age 
groups: 

AGE GROUP 15-19 (n = 224) 

Age still shows a strong direct effect for this age group and omitting it 
from the model y1ould considerably reduce the explanatory power of the model. 
The direct effect of years of education almost disappears and the explanation 
is given by the indirect path through age at marriage. In the older age 
group, the direct effect of age almost disappears and the rest of the effect 
on y is mainly through education and age at marriage jointly. The results 
are intuitively reasonable and support the view that even within age 
cohorts, age should be included as an explicit variable in the structural 
model. No information is lost by this inclusion and considerable gains are 
possible both in terms of overall explanatory power and the decomposition 
of effects. 
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AGE GROUP 45-49 (n 442} 

(,, 
o.~x2----=0.06(0) 

x __.......- \ 0.06(0) ~ 
1

~.39\~' -0.26 
0 X3 i 0.92 

xv 

6.2 STANDARDIZED VERSUS UNSTANDARDIZED COEFFICIENTS 

xw 

10.95 

y 

A conventional path coefficient gives the expected effect on the predicted 
variable of a change of one standard deviation in the predictor. The 
assumption which underlies this is that the effect of a variable is relative 
to the distribution of the variables in the population. The unstandardized 
coefficient (the regression coefficient on the raw data) gives the effect 
in terms of a unit change in the predictor. Both coefficients give useful 
information. In the latter case, we consider the effect, say, of an 
additional year of education; in the former we consider the effect of a 
unit increase in years of education, defined in terms of the distribution 
of education in the population. The two approaches are compatible and 
represent different modes of interpretation, both of which can be useful 
in identifying the structural parameters of the model. Indeed, a mixture 
of standardized and unstandardized variables can be used in the same model. 

6. 3 CONCLUSION 

A note of caution is appropriate here. The estimation of the coefficients 
of the structural model provides us with predictive equations for the 
variables in the model. It may seem in order to apply the results to the 
formulation of policy. For example, it is clear from the analysis that 
education has a negative effect on fertility. However this does not mean 
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that an overall increase in level of education will reduce fertility. The 
equation we have produced is an equation for individuals within the present 
system. If we change the population distribution of the variable (and 
therefore the system), the result may not hold. Although for a particular 
individual an increase in education may lead to lower fertility than would 
otherwise be the case, this does not imply that a change in the overall 
level of education in the population will affect fertility. The non­
experimental nature of the data precludes such inferences. Similarly, 
although age at marriage is negatively related to fertility, a change in 
the average age of marriage in the population may have no effect on 
fertility. The context-dependence of the results is important to bear in 
mind and is related in part to the omission of intermediate variables from 
the model. Education (or age at marriage) may be a useful proxy for prediction 
in the system due to a relationship with some of these intermediate variables. 
But both may simply represent cultural or social differences in the population 
which we are not measuring directly. If the population distributions of the 
variables are changed, they may lose their usefulness as predictors and a 
new structural model may be required. 

The caution above is not a criticism of path analysis - it is a statement 
of the inherent constraints on the analysis of cross-sectional social science 
data. Path analysis models can be very helpful in disentangling a complex 
set of relationships and, used with care, can add considerably to our 
knowledge of the mechanisms at work in the population. Not the least of the 
advantages is the fact that the use of such models forces the researcher to 
be explicit about his theorizing and permits criticism and evaluation of 
the assumptions built into the models. 
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